If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2+18w-9=0
a = 5; b = 18; c = -9;
Δ = b2-4ac
Δ = 182-4·5·(-9)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{14}}{2*5}=\frac{-18-6\sqrt{14}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{14}}{2*5}=\frac{-18+6\sqrt{14}}{10} $
| z/2.75=4 | | 12+y/6=24-5 | | -104=5x+6 | | 5a-10=4a+18 | | 30=5(y-4)-20 | | m+19=23 | | -6x+10=4(5-x) | | 13y+63=180 | | 6n(n-1)+4n=3 | | 19x+3=79 | | (X+3)^2-(x-3)^2=84 | | 19x+3=76 | | -6+(-2n)=3n-6+5 | | 4f÷3=40 | | 19x+3=47 | | 19x+3=64 | | 5/3x+1/3x=56/3+8/3x | | 3x-15=2x-22 | | 12+4x=72 | | −874=−3(17x+1)−4 | | 2x+5+2x+3x=4x+ | | 8n-2(1n+5)=3+6n | | -10=-6-5y | | 6x+3=-29 | | C=9(b-2) | | 9(1.05^(3x+1)=15 | | 4x^-3=2 | | 9(1.05^3x+1)=15 | | Y+45x=183 | | 8y=(5y+9) | | 6t+18=24 | | 30x+24=-45-6 |